

Max Marks: 60

Date: 06.08.2022

ABHIMANYU BATCH PHYSICS : DCT Topic: Stationary Waves

				•	v						
1.	Two organ pipes, each closed at one end, give 5 beats s^{-1} when emitting their fundamental notes. If their lengths										
	are in	are in the ratio 50 : 51, their fundamental frequencies are									
	(a)	250, 255	(b)	255, 250	(c)	260, 265	(d)	265,270			
2.	The frequency of the first overtone of a closed pipe of length l_1 is equal to that the first overtone of an open pipe										
	of length l_2 . The ratio of their lengths ($l_1 : l_2$) is										
	(a)	2:3	(b)	4:5	(c)	3:5	(d)	3:4			
3.	Air is	blown at the mouth	of an op	ben tube of length 25	cm and	diameter 2 cm. If the	velocity	of sound in air is 330			
	ms ⁻¹ , t	then the emitted free	quencies	(in Hz) are							
	(a)	660, 1320, 2640	(b)	660, 1000, 3300	(c)	302, 664, 1320	(d)	330, 990, 1690			
4.	A pipe opened at both ends produces a note of frequency f_1 . When the pipe is kept with $\frac{3}{4}$ th of its length it										
	A pipe opened at both ends produces a note of frequency f_1 . When the pipe is kept with $\frac{1}{4}$ the of its length in water, it produces a note of frequency f_2 . The ratio $\frac{f_1}{f_2}$ is										
	(a)	$\frac{3}{4}$	(b)	$\frac{4}{3}$	(c)	$\frac{1}{2}$	(d)	2			
5.	A closed organ pipe of length 1.2 m vibrates in first overtone mode. The pressure variation is maximum at										
	(a)	0.4 m from the op	en end		(b)	0.4 m from the closed end					
	(c)	Both (a) and (b)			(d)	0.8 m from the oper	n end				

- 6. An organ pipe P closed at one end vibrates in its first harmonic. Another organ pipe Q open at both ends vibrates in its third harmonic. When both are in resonance with a tuning fork, the ratio of the length of P to that of Q is
 - (a) $\frac{1}{2}$ (b) $\frac{1}{4}$ (c) $\frac{1}{6}$ (d) $\frac{1}{8}$
- 7. Two closed organ pipes A and B, have the same length. A is wider than B. they resonate in the fundamental mode at frequencies n_A and n_B respectively, then
 - (a) $n_A = n_B$
 - (b) $n_A > n_B$
 - (c) $n_A < n_B$
 - (d) Either (b) or (c) depending on the ratio of their diameters
- 8. If λ_1 , λ_2 and λ_3 are the wavelengths of the waves giving resonance with the fundamental, first and second overtones respectively of a closed organ pipe. Then, the ratio of wavelengths $\lambda_1 : \lambda_2 : \lambda_3$ is
 - (a) 1:3:5 (b) 1:2:3 (c) 5:3:1 (d) $1:\frac{1}{3}:\frac{1}{5}$

9. An organ pipe closed at one end has fundamental frequency of 1500 Hz. The maximum number of overtones generated by this pipe which a normal person can hear is

- (a) 4 (b) 13 (c) 6 (d) 9
- 10. Two closed organ pipes 100 cm and 101 cm long gives 16 beats in 20 s, when each pipe is sounded in its fundamental mode. Calculate the velocity of sound
 (a) 303 ms⁻¹
 (b) 332 ms⁻¹
 (c) 323.2 ms⁻¹
 (d) 300 ms⁻¹
- 11. An open pipe is suddenly closed at one end with the result that the frequency of third harmonic of the closed pipe is found to be higher at 100 Hz. The fundamental frequency of the open pipe is
 - (a) 200 Hz (b) 480 Hz (c) 240 Hz (d) 300 Hz

- 12. An open organ pipe has fundamental frequency 100 Hz. What frequency will be produced if its one end is closed?
 - (a) 100, 200, 300, ... (b) 50, 150, 250, ...
 - (c) $50, 100, 200, 300, \dots$ (d) $50, 100, 150, 200, \dots$
- A pipe closed at one end and open at the other end, resonates with sound waves of frequency 135 Hz and also 165 Hz, but not with any wave of frequency intermediate between these two. Then. The frequency of the fundamental note is
 - (a) 30 Hz (b) 15 Hz (c) 60 Hz (d) 7.5 Hz
- 14. A glass tube is open at both the ends. A tuning fork of frequency f resonates with the air column inside the tube. Now, the tube is places vertically inside water so that half the length of the tube is filled with water. Now, the air column inside the tube is in unison with another fork of frequency f'. Then
 - (a) f' = f (b) f' = 4f (c) f' = 2f (d) $f' = \frac{f}{2}$
- 15. A cylindrical tube, open at both ends emits a fundamental frequency f in air. The tube is dipped vertically in water, so that half of it is in water. The fundamental frequency of air column is now
 - (a) f/2 (b) 3f/4 (c) f (d) 2f

Max. Marks: 60

(a)

Date: 06.08.2022

ABHIMANYU BATCH MATHEMATICS : DCT

Topic: Equation of Tangent Normal and Rate of Measurement

1. The abscissa of the points, where the tangent to curve $y = x^3 - 3x^2 - 9x + 5$ is parallel to X-axis, are

(a)
$$x = 0$$
 and 1 (b) $x = 1$ and -1 (c) $x = 1$ and -3 (d) $x = -1$

2. For the curve $x = t^2 - 1$, $y = t^2 - t$, the tangent line is perpendicular to X-axis when

t = 0 (b) t =
$$\infty$$
 (c) t = $\frac{1}{\sqrt{3}}$ (d) t = $-\frac{1}{\sqrt{3}}$

3. The equation of tangent at (-4, -4) on the curve $x^2 = -4y$ is (a) 2x + y + 4 = 0 (b) 2x - y - 12 = 0 (c) 2x + y - 4 = 0 (d) 2x - y + 4 = 0

4. The equation of the tangent to the curve
$$\sqrt{x} + \sqrt{y} = a \operatorname{at} \left(\frac{a^2}{4}, \frac{a^2}{4} \right)$$
 is

(a)
$$xy = a^2$$
 (b) $x + y = \frac{a^2}{2}$ (c) $xy = \frac{a^2}{2}$ (d) $x - y = \frac{a^2}{2}$

5. The equation of the normal to the curve $y = \sin \frac{\pi x}{2}$ at (1, 1) is

(a)
$$y = 1$$
 (b) $x = 1$ (c) $y = x$ (d) $y - 1 = \frac{-2}{\pi}(x - 1)$

6. The equation of tangent to the curve
$$y = 2 \sin x$$
 at $x = \frac{\pi}{4}$ is

(a) $y - \sqrt{2} = 2\sqrt{2}\left(x - \frac{\pi}{4}\right)$ (b) $y + \sqrt{2} = \sqrt{2}\left(x + \frac{\pi}{4}\right)$ (c) $y - \sqrt{2} = -\sqrt{2}\left(x - \frac{\pi}{4}\right)$ (d) $y - \sqrt{2} = \sqrt{2}\left(x - \frac{\pi}{4}\right)$

Learning with the Speed of Mumbai and the Tradition of Kota

7.	The e	quation of the tange	nt to the	curve $y = 2 \sin x + \sin x$	in 2x at :	$x = \frac{\pi}{2}$ is equal to				
	(a)					5	(d)	$y + 3\sqrt{3} = 0$		
8.	The d	isplacement of a ap	rticle in (b)	time t is given by $s = 3$	$2t^2 - 3t$ (c)	+ 1. The acceleration 4	is (d)	5		
9.	If the (a)	distance 's' travelle a	d by a p (b)	article in time t is s = -a	a sin t + (c)	b cos 2t, then the acc 4b	celeration (d)	h at $t = 0$ is $-4b$		
10.	The equation of motion of a particle moving along a straight line is $s = 2t^3 - 9t^2 + 12t$, where the units of s and t are cm and sec. The acceleration of the particle will be zero after									
	(a)	3/2 sec	(b)	2/3 sec	(c)	1/2sec	(d)	2 sec		
11.			and desc	ribes a distance s in	t second	ls given by equation	$s = \frac{1}{2}gt$	² . The acceleration of		
	the sto (a)	one is Uniform	(b)	Zero	(c)	Non-uniform	(d)	Indeterminate		
12.	A poi veloci		ght line	during the time $t = 0$) to $t = 1$	3 according to the la	w s = 1.	$5t - 2t^{-2}$. The average		
	(a)	3 units	(b)	9 units	(c)	15 units	(d)	27 units		
13.	Radius of a circle is increasing uniformly at the rate of 3 cm/sec. The rate of increase in area when radius is 10 cm, will be									
	(a)	π cm ² /s	(b)	$2 \pi \text{ cm}^2/\text{s}$	(c)	10π cm ² /s	(d)	60π cm ² /sec		
14.	Sides rate of		reasing a	at the rate 0.5 cm/sec	. When	the side is 10 cm lon	g, its are	ea is increasing at the		
	(a)	$100 \text{ cm}^2/\text{sec}$	(b)	$0.10 \text{ cm}^2/\text{sec}$	(c)			1 cm ² sec		
15.	The v	olume V and depth	tance 's' travelled by a particle in time t is $s = a \sin t + b \cos 2t$, then the acceleration at $t = 0$ is (b) $-a$ (c) $4b$ (d) $-4b$ (d) $-4b$ the travelled by a particle moving along a straight line is $s = 2t^3 - 9t^2 + 12t$, where the units of s and t and sec. The acceleration of the particle will be zero after $3/2 \sec$ (b) $2/3 \sec$ (c) $1/2\sec$ (d) $2 \sec$ is falling freely and describes a distance s in t seconds given by equation $s = \frac{1}{2}gt^2$. The acceleration of is Juliform (b) Zero (c) Non-uniform (d) Indeterminate moves in a straight line during the time $t = 0$ to $t = 3$ according to the law $s = 15t - 2t^2$. The average is 3 units (b) $9 units$ (c) $15 units$ (d) $27 unitsof a circle is increasing uniformly at the rate of 3 cm/sec. The rate of increase in area when radius isfull be\pi \text{ cm}^2/\text{s} (b) 2\pi \text{ cm}^2/\text{s} (c) 10\pi \text{ cm}^2/\text{s} (d) 60\pi \text{ cm}^2/\text{sec}a square are increasing at the rate 0.5 cm/sec. When the side is 10 cm long, its area is increasing at the100 cm2/\text{sec} (b) 0.10 \text{ cm}^2/\text{sec} (c) 10 \text{ cm}^2/\text{sec} (d) 1 \text{ cm}^2\text{sec}une V and depth x of water in a vessel are connected by the relation V = 5x - \frac{x^2}{6} and the volume ofincreasing at the rate of 5 cm3/\text{sec}, when x = 2 cm. The rate at which the depth of water is increasing, is$							
	water is increasing at the rate of 5 cm ³ /sec, when $x = 2$ cm. The rate at which the depth of water is increasing, is									
	(a)	$\frac{5}{18}$ cm/sec	(b)	$\frac{1}{4}$ cm/sec	(c)	$\frac{5}{16}$ cm/sec	(d)	$\frac{15}{13}$ cm/sec		

Max Marks: 60

Date: 06.08.2022

ABHIMANYU BATCH PHYSICS : DCT ANSWER KEY

Topic: Stationary Waves

1.	(b)	2.	(d)	3.	(a)	4.	(c)	5.	(a)
6.	(c)	7.	(c)	8.	(d)	9.	(c)	10.	(c)
11.	(a)	12.	(b)	13.	(b)	14.	(a)	15.	(c)

Max. Marks: 60

Date: 06.08.2022

ABHIMANYU BATCH MATHEMATICS : DCT ANSWER KEY Topic: Equation of Tangent Normal and Rate of Measurement

1.	(d)	2.	(a)	3.	(d)	4.	(b)	5.	(b)
6.	(d)	7.	(a)	8.	(c)	9.	(d)	10.	(a)
11.	(a)	12.	(b)	13.	(d)	14.	(c)	15.	(d)